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Confidence Intervals for Error Rates Observed in
Coded Communications Systems

Jon Hamkins∗

ABSTRACT. — We present methods to compute confidence intervals for the codeword error

rate (CWER) and bit error rate (BER) of a coded communications link. We review several

methods to compute exact and approximate confidence intervals for the CWER, and specif-

ically consider the situation in which the true CWER is so low that only a handful, if any,

codeword errors are able to be simulated. In doing so, we answer the question of how long

an error-free simulation must be run in order to certify that a given CWER requirement is

met with a given level of confidence, and discuss the bias introduced by aborting a simulation

after observing the first codeword error.

Next, we turn to the lesser studied problem of determining confidence intervals for the BER

of coded systems. Since bit errors in systems that use coding or higher-order modulation

do not occur independently, blind application of a method that assumes independence leads

to inappropriately narrow confidence intervals. We present a new method to compute the

confidence interval properly, using the first and second sample moments of the number of bit

errors per codeword. This is the first method we know of to compute a confidence interval

for the BER of a coded or higher-order modulation system.

I. Introduction

The simulated performance of a communications system should always come with the caveat

that error bars are associated with the numerical results. Longtime JPLer Dick Mathison

was notorious for asking why error bars were not being shown on plots presented at reviews.

Care should be taken to verify that the simulations are long enough so that the error bars are
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acceptably small, even if they are not shown.

However, at very low error rates it may be impractical to simulate many error events. What

can we conclude about performance when only a handful, or even zero, events are simulated?

A related question that a flight project might ask is, how long must a laboratory test be run

error-free before concluding that a given error-rate requirement is met? How do these answers

change when the error events are not independent? This article presents methods to compute

the statistical confidence intervals that help answer these questions.

First, we address the computation of confidence intervals for the codeword error rate (CWER),

or frame error rate, observed in a simulation or test of transmitted codewords. The approach

is quite general and applies to any independently occuring events including, for example,

the BER of uncoded binary channels, or the modulation-symbol error rate on an uncoded

memoryless channel, but for the ease of presentation, we henceforth discuss only codeword

errors. We develop guidelines that can aid the practicing engineer in certifying that their

simulation or laboratory test of codeword errors is sufficient to prove that an error rate

requirement has been met. Even though these guidelines are mathematically rigorous, we

still refer to them as:

Rules of Thumb

1. An error-free simulation or test of w codewords certifies that the true CWER is less

than 4/w, with 95% confidence.

2. At least 4 codeword errors must be observed in order to determine the CWER to within

an order of magnitude, with 95% confidence.

3. A simulation will be accurate to within plus or minus 100γ% of its observed CWER,

with 95% confidence, if 4/γ2 codeword errors are observed. This means 16 codeword

errors are sufficient for an error margin of plus or minus 50%, 400 are enough for 10%,

and 40000 are enough for 1%, with 95% confidence.

4. A simulation or test designed to immediately abort after observing the first codeword

error produces a biased estimate of the CWER, and this bias can be more than an order

of magnitude when CWER < 10−6.

A second, and as far as we know novel, contribution of this article is the development of

confidence intervals for the bit error rate (BER) of coded systems. Unlike codeword errors,

bit errors in coded systems do not occur independently. We show that blindly computing a

confidence interval for the BER under the false assumption that bit errors are independent

leads to an inappropriately narrow interval. We present a method to compute the confidence

interval properly, using the first and second sample moments of the number of bit errors per

codeword. This method connects the rules of thumb above for CWER to corresponding rules

of thumb for BER of coded systems.
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Section II discusses the history of the confidence interval problem in communications, Sec-

tion III presents confidence intervals for the CWER, and Section IV presents confidence

intervals for the BER. Numerical examples are given in Section V.

II. History of the Confidence Interval Problem in Communications

In 1976, Massey had a contract with NASA [1] to help find a channel code appropriate

for the International Ultraviolet Explorer (IUE), a joint space mission between NASA, the

European Space Agency, and the UK Space Research Council. The mission did in fact use a

convolutional code and went on to great success, returning over 100,000 images that formed a

heavily used astronomy database and spawned nearly 4,000 peer-reviewed astronomy papers.

IUE decided it wanted a constraint-length 24, rate 1/2 convolutional code with sequential

decoding. See, e.g., [2] for a discussion of sequential decoding of convolutional codes. This

mission was just prior to the era in which much shorter constraint-length codes decoded with

the Viterbi algorithm began to become the norm. Indeed, it stands out that at the time

Massey referred to constraint-length 24 as “rather short” [1]!

Massey proceeded to analyze and simulate virtually every binary (24,1/2) convolutional code

that had been proposed up to that time. He considered ten codes in all, including ones

designed by himself, Costello, Johannesson, Bahl, Jelinek, Bussgang, Lin, and Lyne — see

the references of [1] for full details on the codes. With the large constraint length of 24 and

short codeword length of 256 bits, terminating the trellis reduced the code rate noticeably

— unfortunately, this was before the invention of the tail-biting method, which would have

neatly avoided the problem (see, e.g., [3]) — and so Massey also considered various partial

termination schemes.

Given the computers of the day, Massey’s simulations were limited to decoding, for each

code, 10,000 codewords at one signal-to-noise ratio (SNR). Four top candidate codes were

each simulated for an additional 40,000 codewords. His simulations produced 0 to 5 codeword

errors for each code. With this hard-fought-for but meager amount of data, Massey used

confidence intervals to make conclusions about the relative merits of the various codes.

III. Confidence Interval for the CWER

Suppose that X = x codeword errors are observed in a simulation or test of w transmitted

codewords. We assume that the channel is memoryless, so that codeword errors are statisti-

cally independent. The observed CWER is p̂ , x/w. Let p denote the true CWER. Then X

is a binomially distributed random variable with success probability p and number of trials w,

which we denote by X ∼ Bin(w; p). Let a(X,w) and b(X,w) be two deterministic functions

of the observed data such that, with probability β, the interval (a(X,w), b(X,w)) contains
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the true value p:

P [a(X,w) ≤ p ≤ b(X,w)] = β. (1)

Here, X is the only random parameter (w is a known constant, p is an unknown non-random

parameter, and the functions a() and b() are known). Any interval defined by a function pair

that satisfies (1) is said to be a β-confidence interval.

Care should be given in speaking correctly of confidence intervals. When one runs a simulation

and the random variable X is observed to be x and the 95% confidence interval is computed

to be (a(x,w), b(x,w)), it is tempting but not appropriate to say that the probability that

a(x,w) ≤ p ≤ b(x,w) is 0.95. The reason this is incorrect is that there is no randomness

associated with x, w, p, or the deterministic functions a() and b(), so it makes no sense to

speak of probabilities relating only to them. For the particular value of X observed, x, the

resulting interval (a(x,w), b(x,w)) either contains p or it doesn’t.

Instead, one should speak of the probability relating to (a(X,w), b(X,w)). Thus, we can

properly say that a priori a w-trial simulation has a 95% probability of producing a confi-

dence interval that contains p (even though any particular confidence interval from a w-trial

simulation either definitively does or or does not contain it); or, equivalently, that if the w-

trial simulation is repeated an unbounded number of times, 95% of the computed confidence

intervals will contain the parameter p.

A. Exact Confidence Interval Using the Binomial Distribution

A robust confidence interval may be derived using the actual binomial distribution being

observed, with no approximation. In this section, we review the approach presented in [4].

The probability that the true value p is outside of a β-confidence interval (a(X,w), b(X,w))

is 1− β. If we constrain the interval to have the property that the probability that the true

value p is below the interval is the same as the probability that p is above the interval, i.e.,

α , (1−β)/2 in each case, the result is the Clopper-Pearson confidence interval (a, b), where a

is defined so that a binomial random variable with success-probability a will have probability

α of having at least x successes in w trials,

P [Bin(w; a) ≥ x] = α (2)

and where b is defined so that a binomial random variable with success-probability b will have

probability α of having at most x successes in w trials,

P [Bin(w; b) ≤ x] = α. (3)

A direct computation of this using the binomial distribution can be unwieldy for large w. To

compute these probabilities in a numerically robust way we can use the relationship between

a binomial cumulative distribution and the incomplete beta function:

P [Bin(w; b) ≤ x] = I1−b(w − x, x+ 1) (4)
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where Iy(c, d) is given by

Iy(c, d) ,
1

B(c, d)

∫ y

0

tc−1(1− t)d−1dt (5)

and where B(c, d) is the beta function given by

B(c, d) ,
∫ 1

0

tc−1(1− t)d−1dt =
(c− 1)!(d− 1)!

(c+ d− 1)!
(6)

when c and d are integers.

Thus, the β-confidence interval (a, b) is given by the solution to:

1− I1−a(w − x+ 1, x) =
1− β

2
= I1−b(w − x, x+ 1). (7)

Evaluating this numerically is straightforward, if cumbersome. Fortunately, the intervals so

calculated are insentive to w, in the sense that the normalized interval

(ā, b̄) ,


(
a

p̂
,
b

p̂

)
if p̂ > 0

(aw, bw) if p̂ = 0

(8)

to three significant digits does not depend on w when w is greater than about 2000. Table 1

lists the normalized confidence intervals (ā, b̄), for small values of x and w > 2000, as computed

by a C program. The table can be used to compute the 90%, 95%, or 99% confidence interval

(a, b), by

(a, b) ,


(āp̂, b̄p̂) if p̂ > 0(
ā

w
,
b̄

w

)
if p̂ = 0

(9)

where, recall, p̂ = x/w is the observed CWER.

From the first row in Table 1, we see that the upper end of the 95% confidence in an error-free

simulation of w codewords is 3.69/w, which establishes Rule of Thumb 1. From the second

column in Table 1, we have b/a = b̄/ā < 10 when x ≥ 4, which establishes Rule of Thumb 2.

This confidence interval can also be computed by the BERCONFINT function of MATLAB1,

subject to a caveat: the BERCONFINT function seems to be numerically inaccurate in some

low-probability cases. For example, Figure 1 shows the 95% confidence intervals when observ-

ing exactly x = 1 error in w trials, for varying w, as computed with BERCONFINT(1,w,0.95)

in MATLAB 2013b, and with a C program which numerically solves (7). In MATLAB, the

lower endpoint of the interval appears to be inaccurate below about 10−9.

From Figure 1, it is clear that no matter how long a simulation is run, if only x = 1 event is

observed, the upper and lower ends of the 95% confidence interval will remain about two and

a half decades apart, consistent with the x = 1 entry in Table 1.

1MATLAB, version 8.2.0 (R2013b), The MathWorks Inc., Natick, Massachusetts, 2013.
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Table 1. Normalized confidence interval (ā, b̄) for CWER when x codeword errors are observed.

(ā, b̄) at confidence level:

x 90% 95% 99%

0 (0,3.00) (0,3.69) (0,5.30)

1 (0.0513,4.74) (0.0253,5.57) (0.00501,7.43)

2 (0.178,3.15) (0.121,3.61) (0.052,4.64)

3 (0.273,2.58) (0.206,2.92) (0.113,3.66)

4 (0.342,2.29) (0.272,2.56) (0.168,3.15)

5 (0.394,2.10) (0.325,2.33) (0.216,2.83)

6 (0.436,1.97) (0.367,2.18) (0.256,2.61)

7 (0.469,1.88) (0.402,2.06) (0.291,2.45)

8 (0.498,1.80) (0.432,1.97) (0.321,2.32)

9 (0.522,1.75) (0.457,1.90) (0.348,2.22)

10 (0.543,1.70) (0.480,1.84) (0.372,2.14)

15 (0.616,1.54) (0.560,1.65) (0.460,1.88)

20 (0.663,1.45) (0.611,1.54) (0.518,1.73)

25 (0.695,1.40) (0.647,1.48) (0.560,1.64)

30 (0.720,1.36) (0.675,1.43) (0.592,1.57)

35 (0.739,1.33) (0.697,1.39) (0.618,1.52)

40 (0.755,1.30) (0.714,1.36) (0.640,1.48)

45 (0.768,1.28) (0.729,1.34) (0.658,1.45)

50 (0.779,1.27) (0.742,1.32) (0.673,1.43)

75 (0.818,1.21) (0.787,1.25) (0.728,1.34)

100 (0.841,1.18) (0.814,1.22) (0.761,1.29)

200 (0.887,1.12) (0.866,1.15) (0.827,1.20)

400 (0.919,1.09) (0.904,1.10) (0.876,1.14)

500 (0.928,1.08) (0.914,1.09) (0.889,1.12)

750 (0.941,1.06) (0.930,1.07) (0.908,1.10)

1000 (0.949,1.05) (0.939,1.06) (0.920,1.08)
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Figure 1. The confidence interval after observing 1 codeword error in w codewords, for various w. The

BERCONFINT function in MATLAB is not always accurate at low probabilities.

B. Gaussian Approximation

Generally, the confidence interval of the previous section, which involves no approximation, is

the best approach and computers can easily compute the confidence intervals. Nevertheless,

approximations remain conceptionally and computationally easier, and are still popular.

One simple approach to confidence intervals is to note that by the Central Limit Theorem

(CLT), as w →∞, the probability density function of p̂ approaches that of a Gaussian random

variable with mean p and variance p(1− p)/w [5]. The mean and variance may be estimated

by p̂ and p̂(1− p̂)/w, respectively, which leads to the β-confidence interval

(p̂− a, p̂+ a) (10)

where

a =

√
p̂(1− p̂)

w
·Q−1(α) (11)

where Q(x) , 1√
2π

∫∞
x
e−t

2/2dt is the tail probability of a zero-mean, unit-variance Gaussian

random variable, and as before, α , (1− β)/2. For a 95% confidence interval, Q−1(0.025) ≈
1.96.

Massey points out that when X is small, p̂(1− p̂)/w is not a good estimate of the variance of

X [1]. In addition, the Gaussian distribution itself is not a good approximation when pw is

small. In fact, no matter how large w is, if X < 4 the confidence interval includes a negative

range!

A simulation that collects X ≥ 385 codeword errors will be able to estimate the CWER to
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within an error of 10%, with 95% confidence, because from (11),

a

p̂
=
Q−1(0.025)

p̂

√
p̂(1− p̂)

w
<
Q−1(0.025)√

p̂w
<

1.96√
385

< 0.1 (12)

where we have used 1− p̂ < 1, Q−1(0.025) < 1.96 and p̂ ≥ 385/w. In general, when the length

of the β-confidence interval for the CWER is desired to be shorter than plus or minus 100γ%

from the estimate, the simulation should be run until X ≥ (Q−1(α)/γ)2. This establishes

Rule of Thumb 3, which is useful for the communications engineer to know how long to run

a simulation to get a desired accuracy for the CWER.

C. Poisson Approximation

Massey introduced what is now a standard method to overcome some of the limitations of the

Gaussian approximation above, by noting that when w � 1 and p � 1, X is approximately

Poisson distributed, with mean λ and variance λ, where λ , wp. Using the Poisson probability

mass function fX(i) = λi

i! e
−λ leads to the β-confidence interval (λL, λH) for p̂w, given by the

solution to
w∑
i=x

λiL
i!
e−λL = α (13)

x−1∑
i=0

λiH
i!
e−λH = α (14)

where again, α , (1 − β)/2. The confidence interval for p̂, then, is (λL/w, λH/w). This

solution works adequately for x < 5 [1], and for x > 10 it is nearly identical to the Gaussian

approximation discussed above [4].

D. Aborted Simulations

Imagine that a simulation of a channel code is set up to abort after the first codeword error

is observed, and let the random variable W denote the number of codewords simulated. How

does the estimate p̂ = 1/W relate to the true probability of error p?

It turns out that p̂ is a biased estimate of p:

E[p̂] =

∞∑
w=1

(1− p)w−1p · 1

w
=

p

1− p
∞∑
w=1

(1− p)w
w

= p · − ln(p)

1− p . (15)

The bias factor, [− ln(p)]/(1 − p), is greater than 10 when p < 10−6, as is seen in Table 2.

This establishes Rule of Thumb 4.

On the other hand, the expected value of W is

E[W ] =

∞∑
i=0

(1− p)ip(i+ 1) =
1

p
. (16)
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Table 2. The bias in a simulation that aborts after first codeword error.

p Bias factor

10−1 2.56

10−3 6.91

10−6 13.82

10−9 20.72

That is, if there is a one in a million chance of simulating a codeword error, one should expect

to simulate about a million codewords to see the first codeword error.

Given W = w, what is the maximum likelihood (ML) estimate of p? This is given by finding

the p which maximizes the probability mass function of W at W = w:

p̂ = argmax
p∈[0,1]

(1− p)w−1p. (17)

When w = 1, p̂ = 1. When w > 1, we may solve

d

dp
(1− p)w−1p = 0 (18)

to see that p̂ = 1/w. So the ML estimate of p is the observed value, 1/w, even though this is

a biased estimate.

IV. Confidence Intervals for the BER of a Coded System

We turn now to the novel contribution of this article. We desire to determine the confidence

interval for the BER of a coded communications system, based on simulations of the decoder.

As we mentioned earlier, if the system is uncoded and a binary-input memoryless channel is

used, the bit errors would be independent and the methods in Section III could be directly

applied. The analysis in this section applies to any situation in which block errors occur and

bit errors occur (only) within block errors. As such, it could also be used to analyze the BER

of a link using higher-order modulation, whether uncoded or coded.

A. Early Identification of the Problem

Massey recognized in 1976 that while the procedure in Section III-C is useful for computing

CWER confidence intervals, it cannot be used in the same way to compute BER confidence

intervals [1]: “It probably should be pointed out that, although 256 information bits are

decoded in each frame so that there are 256 times as many bit decoding decisions as frame

decoding decisions, one cannot assert greater statistical confidence in the observed decoding

bit error probability than in the observed frame error probability. The reason of course
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is that the decodings of bits within a frame are highly dependent so that one has no more

independent bit decoding decisions from which to infer probabilities than one has independent

frame decoding decisions.”

In other words, counting x bit errors in w total simulated bits and applying the formulas (13)

and (14) would result in an inappropriately narrow confidence interval for the BER.

Much of the literature on confidence intervals for BER treats the case in which bit errors

are independent events (e.g., [6, 7]), and MATLAB’s function BERCONFINT() to compute

the confidence interval for BER also assumes this2. While there has been some work on

BER confidence intervals on channels with memory [8], to our knowledge the computation of

confidence intervals for a block-coded system has not been presented.

B. A BER Confidence Interval Based on a Gaussian Approximation

Suppose w codewords of a binary (n, k) code are simulated, and for the sake of analysis,

suppose that the decoder is required to output an estimate of the information bits in each

codeword, whether it successfully completes decoding the codeword or not. Let Bi be a

random variable representing the number of bit errors, 1 ≤ Bi ≤ k, in the ith information

block at the output of the decoder. Then B1, . . . , Bw is a set of i.i.d. random variables. Let

µ , E[Bi] (19)

σ2 , var[Bi] = E[B2
i ]− µ2. (20)

Typically, the distribution of Bi is unknown. For modern iteratively decoded channel codes

such as low-density parity-check codes, the distribution of Bi may depend on the SNR of

the simulation, or details of the decoder, even when conditioned on the event that a codeword

error has occurred. For example, at low SNR when codeword errors are dominated by the

decoder’s failure to converge, many bit errors may occur in each codeword error, while at high

SNR where the decoder performance is limited by the code’s minimum distance or trapping

sets, only a handful of bit errors might typically occur in each codeword error (and of course,

the CWER itself is lower).

Let pb denote the true BER. The number of bits simulated is kw, so the observed BER is

given by

p̂b =
1

kw

w∑
i=1

Bi.

As w →∞, by the CLT we have

p̂b ∼ N
(
µ

k
,
σ2

k2w

)
.

2MATLAB, version 8.2.0 (R2013b), The MathWorks Inc., Natick, Massachusetts, 2013.
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For large w we may estimate the first and second moments of Bi by their sample first and

second moments:

µ ≈ µ̂ ,
1

w

w∑
i=1

Bi = kp̂b (21)

σ2 ≈ σ̂2 ,

(
1

w

w∑
i=1

B2
i

)
− µ̂2 (22)

where, as before, for convenience we use the biased sample variance instead of the unbiased

sample variance. Thus, a β-confidence interval for the BER can be given by (p̂b− a′, p̂b + a′),

with

a′ =
σ̂

k
√
w
·Q−1(α) (23)

=
1

k
√
w

√√√√( 1

w

w∑
i=1

B2
i

)
−
(

1

w

w∑
i=1

Bi

)2

·Q−1(α) (24)

where α , (1− β)/2. A simulation would normally record only
∑
iBi; by also recording one

extra quantity,
∑
iB

2
i , the confidence interval in (24) may be computed. These two partial

sums may be augmented with each new simulated codeword, so that the entire sequence

B1, B2, . . . need not be stored. Thus, the confidence interval remains easy to compute.

C. BER Confidence Interval When Few Codeword Errors Are Simulated

As with the Gaussian-approximation for the CWER confidence interval, the accuracy of the

interval in (24) depends on the accuracy of the approximation in (22). Even with w very large

— ensuring the accuracy of the CLT approximation for p̂b — if only a few Bi are greater than

zero, we won’t have an accurate estimate of the variance of p̂b. For the CWER, X > 10 is

sufficient; for the BER, even more are needed.

What can be said when only a few codeword errors have been collected? Since bit errors occur

in bunches, not singly, neither the individual bit errors nor the bit errors per codeword, Bi,

are binomial or Poisson distributed, and Massey’s approach [9] cannot be directly applied.

When codeword i is in error, 1 ≤ Bi ≤ k, so that

p̂

k
≤ p̂b ≤ p̂, (25)

which loosely bounds the confidence interval for BER as (λL/(kw), λH/w), where λL and λH

are given in (13) and (14).
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D. Guideline for Simulation Length

We present now an analogous guideline for how long a simulation of a coded system should

be run to get a good estimate of the BER. Let

X ′ ,

(
w∑
i=1

Bi

)2/ w∑
i=1

B2
i . (26)

Theorem 1. The error for the BER estimate, with β-confidence, is less than 100γ% of the

observed BER, p̂b, if X ′ > (Q−1(α)/γ)2, where α , (1− β)/2.

Proof. From (24), we have

a′ <
1

k
√
w

√√√√( 1

w

w∑
i=1

B2
i

)
·Q−1(α) (27)

≤ γ

kwQ−1(α)

w∑
i=1

Bi ·Q−1(α) (28)

= γp̂b. (29)

This connects the accuracy of the Gaussian-approximation confidence interval for BER, based

on X ′, to the accuracy of the Gaussian-approximation confidence interval for CWER, based on

X. Thus, with 95% confidence the BER is within plus or minus 10% of of the simulated BER

when X ′ ≥ 385. Table 3 summarizes the minimum X or X ′ a simulation must reach in order

to achieve a given accuracy at a given confidence level, for the CWER or BER, respectively,

using the Gaussian approximation to the interval discussed in the preceding sections.

V. Examples

A. Constant Number of Bit Errors Per Codeword

Suppose the coded system is such that whenever a codeword error is made, the decoded

codeword contains exactly b bit errors, where b is a constant. In this case,

p̂b =
1

kw

w∑
i=1

bI{codeword i in error} =
bp̂

k
(30)

1

w

w∑
i=1

Bi =
1

w

w∑
i=1

bI{codeword i in error} = bp̂ (31)

1

w

w∑
i=1

B2
i =

1

w

w∑
i=1

b2I{codeword i in error} = b2p̂ (32)

12



Table 3. Minimum X (CWER) or X′ (BER) for a simulation to achieve a given level of accuracy at a given

level of confidence.

Error in X or X ′, at Confidence:

CWER or BER 90% 95% 99%

1% 27056 38415 66349

2.5% 4329 6147 10616

5% 1083 1537 2654

10% 271 385 664

25% 44 62 107

50% 11 16 27

X = Number of codeword errors

X ′ = Given by (26)

where I is the indicator function and, as before, p̂ is the observed CWER. Plugging into (24),

we have

a′ =
1

k
√
w

√
b2p̂− b2p̂2 ·Q−1(α) (33)

=
b

k

√
p̂(1− p̂)

w
·Q−1(α) (34)

=
b

k
a (35)

where a is given in (11), and so the BER confidence interval is

(p̂b − a′, p̂b + a′) =
b

k
(p̂− a, p̂+ a). (36)

That is, the BER confidence interval is exactly b/k times the CWER confidence interval in

(11), as expected. This means that on a log plot of BER and CWER, the length of the

confidence intervals will be the same.

This is an extreme case. Typically, there is some variation in the number of bits-in-error in

the simulated codeword-in-error. In those cases, the length of the BER confidence interval is

strictly greater than that of the CWER confidence interval, reflecting the uncertainty both in

the number of codeword errors and in the number of bits in error within codeword containing

errors.

B. A Turbo Code

Among the turbo codes that have been standardized for space communications [10], we con-

sider the one with input length k = 1784 and code rate r = 1/2. The performance of the
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Figure 2. Performance of the CCSDS k = 1784, r = 1/2 turbo code.

code is shown in Figure 2, where it can be seen that an error floor begins at just below

CWER= 10−5.

A decoder was simulated at Eb/N0 = 0 dB, 1 dB, and 1.7 dB, and the observed distribution

of Bi > 0 is shown in dark gray, light gray, and black, respectively, in Figure 3. At Eb/N0 = 0

dB and 1 dB, the code is operating in the waterfall region, where codewords that fail to

decode correctly have a relatively large number of bit errors. The distribution of these errors

is often indistinguishable from random errors that would occur in uncoded transmission at

that SNR.

At Eb/N0 = 1.7 dB, however, the code is operating just inside the error floor region. The

code has two codewords with input weight 3 and output weight 17, which is the minimum

distance of the code. This explains why Bi = 3 was observed for about 1/4 of the codewords

in error. The code has a total of a few dozen codewords of weight 18, 19, . . . , 28, and at least

836 codewords with input weight 9 and output weight 29 — consistent with Bi = 9 being

observed in more than 10% of the codewords in error. Despite the fact that Bi ≤ 9 in more

than 82% of the codewords in error, the average value of Bi is higher, approximately 10.0.

Thus, most codeword errors do not contribute a representative amount to the BER, making

it necessary to simulate longer, and check that the guideline in Table 3 holds.

A simulation of about 1010 codewords was run at Eb/N0 = 1.7 dB. Figure 4 illustrates the 95%

confidence intervals for the CWER and BER as the simulation progressed. The confidence

intervals for the CWER and BER were computed from (11) and (24), respectively. Since the

CWER at this SNR is less than 10−5, more than 106 simulated codewords were necessary to

collect even ten codewords in error, when the Gaussian-approximation confidence intervals

begin to be appropriate.
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The first few codeword errors are identified in Figure 4. After 5× 106 codewords were simu-

lated, the CWER confidence interval is less than one decade thick, while the BER confidence

interval is about 1.5 decades. At every point in the simulation, the confidence interval for BER

is wider than that of the CWER, as expected. As the simulation of independent codewords

progresses, the CWER confidence interval continually shrinks; the BER confidence interval

also usually shrinks, except that occasionally codewords with large numbers of bit errors are

observed, which can temporarily increase the uncertainty. For example, the first 13 codeword

errors observed contained a total of 59 bit errors, but the 14th codeword error alone contained

144 bit errors. This had a large impact on the average BER to that point, and an enormous

impact on the BER confidence interval, which became vacuous at the lower end.

In this example simulation, the condition of X ′ > 385 was met when w ≈ 460 million

codewords and X = 2048 codeword errors had been simulated. This was more than five

times the simulation length required to achieve the same 10% uncertainty in the CWER.

This is consistent with the higher observed variation in the simulated BER, compared to the

simulated CWER, as the simulation progressed.

Also shown in Figure 4 is a portion of the 95% confidence interval that would be computed if

we incorrectly assumed that bit errors were independent. It can be immediately seen that the

interval is inappropriately narrow, because the true BER is outside of the confidence interval

over wide ranges of the number of simulated codewords.

VI. Conclusions

Four Rules of Thumb were presented relating to the confidence intervals of the CWER of

communications systems. We recommend that the Rules of Thumb be incorporated into test

procedures for flight missions, to assist in properly certifying that error rate requirements are

met with the desired level of confidence.

We caution against computing a BER confidence interval from a simulation or tests of coded

systems, if the method for doing so assumes bit errors are statistically independent. We

provide a proper method to compute the confidence interval for the BER, and show that

because of the variation in the number of bits in error per codeword, verifying the BER to a

given level of fidelity requires a longer simulation or test than is needed verify the CWER to

the same level of fidelity. In the example shown, which is typical, the BER simulation needed

to be run five times as long as the CWER simulation.

This suggests that for coded systems, tests of CWER are generally to be preferred over BER

tests, because they can be shorter and more accurate. This conclusion is strenghtened by not-

ing that during mission operations, codewords in error are detected and discarded, regardless

of the number of bit errors they contain, which makes CWER a more relevant metric than
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BER. The JPL Design Principles3 reinforce this approach, by stating the telecommunications

error rate requirements in terms of CWER, and not BER.
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